If it's not what You are looking for type in the equation solver your own equation and let us solve it.
21x^2-56x+26=0
a = 21; b = -56; c = +26;
Δ = b2-4ac
Δ = -562-4·21·26
Δ = 952
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{952}=\sqrt{4*238}=\sqrt{4}*\sqrt{238}=2\sqrt{238}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-56)-2\sqrt{238}}{2*21}=\frac{56-2\sqrt{238}}{42} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-56)+2\sqrt{238}}{2*21}=\frac{56+2\sqrt{238}}{42} $
| 4y=5-(-12) | | 24=4(x+7 | | x+.40x=96 | | 7n+12=I/2(I4n+24) | | 4.5a-1=3.5a-1 | | 4(z+6)=296 | | −6x−9=9 | | 16-4r=84 | | (b+5)/7=4 | | x+.70x=1.70x=170 | | 4(18-5x)-12(3x-7)=15*(2x-16)-6*(x+14) | | 10x-5x-150=10x+90 | | 1/5(4(k+2)-(3-k)=4 | | 2b-7+3b=-4-2b | | 3/1x+1=4 | | 10-x=-x | | 10(a+6)=a-(5-10) | | 2x+3=10-5 | | 8d-2=5d+22 | | 9-5z=12-6(6z/7) | | x^2=2x=0 | | 114=90+12x | | X-7x-23=45 | | 3–2x=17–4x | | 9/4p-5/p+11/3=0 | | 7x+5=5+9x | | 5t^2+15t+20=0 | | (2.718282)^.07x=2 | | 7x+22=197 | | 34x-23+56=56 | | -2=9/8x | | x^2-12x=35=0 |